پیش‏بینی اثر تغییر آب‏و‏هوایی بر شاخص‏های اقلیم-کشاورزی و عملکرد برنج مطالعه موردی: مناطق شمال ایران

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه جغرافیا، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران

چکیده

      بــرنج  مهم­ترین محصول غذایی و تأثیرگذار در اقتصـاد جمعیت ساکن مناطق شمالی ایران محسوب شده؛ به همین دلیل نیازمند برنامه‏ریزی و مدیریت جدید در زمینه تأثیرات عوامل محیطی- اقلیمی بر روی آن می‏باشد. در این پژوهش میزان عملکرد محصول برنج برای بازه زمانی 2039-2010 با استفاده از داده‏های روزانه بارندگی، دمای حداقل، دمای حداکثر و ساعات آفتابیِ ایستگاه‏های هواشناسی نوشهر، بابلسر و قراخیل مورد بررسی قرار گرفت. از مدل  Lars-WGبرای شبیه‏سازی پارامترهای هواشناسی و از معادلات رگرسیون چند‏متغیره جهت پیش‏بینی میزان عملکرد برنج استفاده شد. نتایج پژوهش نشان داد نوسانات هر یک از پارامترهای دمای حداکثر سپتامبر، دمای حداقل ماه مِی، ساعات آفتابی آگوست و حداکثر دمای سپتامبر موجب نوسان در میزان عملکرد محصول برنج خواهد شد. در ایستگاه نوشهر حساسیت و انطباق بیشتری بین متغیر ساعات آفتابی آگوست و عملکرد محصول برنج مشاهده شد اما بارندگی آوریل یک انطباق نسبی با عملکرد برنج را نشان داد. در ایستگاه قراخیل دمای حداکثر سپتامبر و دمای حداقل در ماه می از حساسیت و انطباق قویتری نسبت به عملکرد محصول برنج برخوردار خواهد بود. اما در مجموع، عملکرد برنج در دو ایستگاه نوشهر و قراخیل واکنش مشابهی نسبت به پارامترهای اقلیمی خواهد داشت و بیشترین انطباق و حساسیت بین عملکرد محصول برنج و حداکثر دمای سپتامبر در ایستگاه بابلسر پیش‏بینی شد. تولید محصول برنج در مناطق نوشهر و قائمشهر از 2010 تا 2029 کاهش خواهد یافت و در منطقه بابلسر از 2010 تا 2019 افزایش یافته و سپس از 2020 تا 2029 روند کاهشی خواهد داشت اما از 2030 تا 2039 برای هر سه ایستگاه در تولید محصول برنج روند افزایشی پیش‏بینی شد

کلیدواژه‌ها


عنوان مقاله [English]

Predict the Impact of Climatic Change on the Agro-climatic Indexes and Rice Yield Case study: North of Iran

نویسنده [English]

  • Mehrdad Ramazanipour
Assistant .prof, Islamic Azad University, Chalous branch , Mazandaran Province.
چکیده [English]

Rice as a strategic and influential product in the economy a significant portion of the population living in the northern regions of the country needs new planning and management in the field of environmental and climatic factors. In this study, the rice yield was estimated for the time interval (2010-2039) with regard to climate parameters fluctuations in northern Iran. The sample meteorological stations were selected in this research: Noshahr, Babolsar and Gharakhil. The Lars-WG model was used to simulate meteorological parameters and multivariate regression equations to predict rice yield. The results showed that the fluctuations of each of the maximum temperature parameters of September, the minimum temperature, the sunny hours of August and the maximum temperature of September would fluctuate in the rice yield.
There is more sensitivity and adaptation between sunshine and rice yield at Noshahr station in August. But the April rainfall shows a relative adaptation to the rice product. The maximum temperature in September and the minimum temperature in May will be due to a stronger sensitivity and conformance to rice yield at Gharakhil Station. But in general, rice yield will have a similar reaction to the climate parameters in Noshahr and Gharakhil stations and the highest compliance and sensitivity between rice crop yield and maximum September temperatures is expected at Bablosar Station. Analysis of the findings revealed that the production of rice will decrease from 2010 to 2029 in Noshahr and Ghaemshahr, and will increase in the Bablosar region from 2010 to 2019, and then decline from 2020 to 2029. But in general, the rising trend in rice yield is projected from 2030 to 2039 for all three stations.

کلیدواژه‌ها [English]

  • Climatic Fluctuations
  • LARS-WG
  • Multivariable Regression
  • Rice Yield Prediction
  • North of Iran
  1. 1.      Alizadeh, Amin (2004): "Principles of Applied Hydrology", 17th Edition, Imam Reza University Press, p. 815. (in Persian)
  2. 2.      Azizi, Ghasem and Mahmoud Roshani (2009): "An Analysis of the Concepts and Effects of Climate Change on the Temperature and Calendar of Rice Cultivars in Giulan", Journal of Geographic Space, 4 (8), pp. 143-155. (in Persian)
  3. 3.      Bazgir, Saeed and Gholamali Kamali (2008): "Prediction of Dry farming of wheat yield using agricultural meteorological indices in some western regions of the country", Journal of Agricultural Sciences and Natural Resources, Vol. 15, No. 64, pp. 113-121. (in Persian)
  4. 4.      Bazrafshan, Javad, Khalili, Ali, Hoorfar, Abdolhossein, Torabi, Sedigheh and Sohrab Hejam (2009): "The study and comparison of the performance of two models (ClimGen and Lars-WG) in simulating meteorological variables in different climatic conditions of Iran" , Water Resources Research, Vol. 44, pp. 1-7. (in Persian)
  5. 5.      Ewert, F., M.D.A., Rounsevell, I., Reginster, M.G., & Leemans, R. (2005): Future Scenarios of European Agricultural Land Use. I. Estimating Changes in Crop Productivitym, Agric. Ecosyst. Environ, Vol 107, pp. 101-116.
  6. 6.      Farajzadeh Manouchehr and Azar Zarrin (2002): "Modeling the yield of dry wheat yield in relation to agri-climatology criteria in West Azarbaijan province", Vol. 6, No. 2, pp. 77-99. (in Persian)
  7. 7.      Haghtalab, Nafiseh, Goodarzi, Mohsen, Habibi Nokhandan, Majid, Yavari, Ahmad Reza and Hamidreza Jafari (2013): "Modeling the climate of Tehran and Mazandaran provinces using the Lars-WG climate model and comparing its changes On the North and South Front of the Central Alborz ", Journal of Environmental Science and Technology, Vol. 15, No. 1, p. 39. (in Persian)
  8. 8.      Hajjarpour, Amir, Soltani, Afshin, Zinaeli, Ebrahim and Faramarz Seydi (2013): "Simulation of the effect of climate change on chickpea production under dry and wet conditions of Kermanshah" Journal of Plant Production Research, Sari Agricultural Sciences and Natural Resources University Vol. 20, No. 2, pp. 235-252. (in Persian)
  9. 9.      Hamidi, Aydin and Mohammad Ali Ramaei (2012): "Challenges for the production, control and certification of rice seed in the country", 15th national rice conference in the country, Sari Agricultural Sciences and Natural Resources University, Tabarastan Agricultural Genetics and Biotechnology Research Center, March 1st, (Axis: Sustainable Production Challenges). (in Persian)
  10. 10.  Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson A. M. & Wolfe, D. (2011): Climate Impacts on Agriculture: Implications for Crop Production, Agronomy Journal, Vol. 103, pp. 351 – 370.
  11. 11.  Hosseini Seyedeh Tayyebeh, Mojtaba Khoshravesh and Mirkhalegh Ziatabar Ahmadi (2015): "Investigating the Effects of Climate Change and Evaluation of the Change of Planting Date on Soybean Yield", Journal of Water Research in Agriculture, Vol. 29, No. 4, pp. 560-575. (in Persian)
  12. 12.  Mohsenpour, Robab and Mansour Zibaee (2010): "The study of Drought Effect on Field Level: A Case Study of Marvdasht Region", Journal of Agricultural Science and Technology, 14 (52), 49-62. (in Persian)
  13. 13.  Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004): Effects of Climate Change on Global Food Production under SRES Emissions and Socio-Economic Scenarios, Global Environmental Change, Vol. 14:53-67.
  14. 14.  Racsko, P., Szeidl, L., & Semenov, M.A. (1991): A serial approach to Local stochastic weather models, Ecological Modeling, 1(57), pp. 27-41.
  15. 15.  Rodríguez Díaz, J.A., Weatherhead, E.K., Knox, J.W., & Camacho1, E. (2007): Climate Change Impacts on Irrigation Water Requirements in the Guadalquivir River Basin in Spain, J. Reg. Environ. Change, 7(3), pp. 149-159.
  16. 16.  Rosenzweig, C., & Parry, M.L. (1994): Potential Impacts of Climate Change onWorld Food Supply, Nature, 367, pp. 133-138
  17. 17.  Rowhani, P., Lobell, D.B., Linderman, M., & Ramankutty, N. (2011): Climate variability and crop production in Tanzania, Agricultural and Forest Meteorology, Vol. 15, pp. 449-460.
  18. 18.  SabziParvar, Ali Akbar, Torkman Mojtaba and Zohreh Marianj (2012): "Investigating the Effect of Agricultural Meteorological Indicators and Variables on the Best Performance of Wheat (Case Study: Hamedan Province), Water and Soil Journal (Agricultural Sciences and Technology Vol. 26, pp. 1554-1567. (in Persian)
  19. 19.  Semenov, M.A., Brooks, R.J., Barrow, E.M., & Richardson, C.W. (1998): Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates, Climate Res, Vol. 10, pp. 95-107.
  20. 20.  Sivakumar, M.V.K., H.P., & Brunini, O. (2005): Impacts of Present and Future Climate Variability and Change on Agriculture and Forestry in the Arid and Semi-Arid Tropics, Climatic Change, Vol. 70, pp. 31–72.