1. Abreu-Harbich, L. V., et al. (2014). Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theoretical and applied climatology, 115(1-2), 333-340.
2. Ahmad, K., et al. (2005). Wind tunnel simulation studies on dispersion at urban streetcanyons and intersections—a review. Journal of Wind Engineering and Industrial Aerodynamics, 93(9), 697-717.
3. Al-Kurdi, N., & Awadallah, T. (2015). Role of Street-Level Outdoor Thermal Comfort in Minimizing Urban Heat Island Effect by Using Simulation Program, Envi-Met: Case of Amman, Jordan. Research Journal of Environmental and Earth Sciences, 7(3), 42-49.
4. Ali-Toudert, F., & Mayer, H. (2007). Thermal comfort in an east–west oriented street canyon in Freiburg (Germany) under hot summer conditions. Theoretical and applied climatology, 87(1), 223-237.
5. Andrade, H., & Alcoforado, M.-J. (2008). Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theoretical and applied climatology, 92(3), 225-237.
6. Behzadfar, M.,& Manaam, A. (2011). Sky factor coefficient affects on thermal comfort Users of urban open space ,investigation of chosen parks in tehran .
7. Bougiatioti, F., et al.(2009). The summer thermal behaviour of “skin” materials for vertical surfaces in Athens, Greece as a decisive parameter for their selection. Solar Energy, 83(4), 582-598.
8. Charalampopoulos, I., et al. (2013). Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosystems, 16(2), 217-233.
9. Coronel, J., & Alvarez, S. (2001). Experimental work and analysis of confined urban spaces. Solar Energy, 70(3), 263-273.
10. de Lieto Vollaro, A., et al. (2014). Numerical study of urban canyon microclimate related to geometrical parameters. Sustainability, 6(11), 7894-7905.
11. Fent, T. (2008). Department of Economic and Social Affairs, Population Division, United Nations Expert Group Meeting on Social and Economic Implications of Changing Population Age Structures. European Journal of Population/Revue européenne de Démographie, 24(4), 451-452.
12. Groat, L., & Wang, D. (2002). Architectural research methods. New York. 361-362.(in Persian)
13. Heldens, W., et al. (2017). Integration of remote sensing based surface information into a three-dimensional microclimate model. ISPRS Journalof Photogrammetry and Remote Sensing, 125, 106-124.
14. Horrison, E., & Amirtham, L. (2016). Role of Built Environment on Factors Affecting Outdoor Thermal Comfort-A Case of T. Nagar, Chennai, India. Indian Journal of Science and Technology, 9(5).
15. Jamei, E., & Rajagopalan, P. (2015). Urban growth and pedestrian thermal comfort. Paper presented at the ASA2015: Living and learning: research for a better built environment: Proceedings of the 49th International conference of the Architectural Science Association.
16. Jamei, E., et al. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 54, 1002-1017.
17. Krüger, E. L., et al. (2011). Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment, 46(3), 621-634. doi: 10.1016/j.buildenv.2010.09.006
18. Lin, T.-P., et al. (2010). Shading effect on long-term outdoor thermal comfort. Building and Environment, 221-213,(1)45.
19. Lin, T.-P., et al. (2012). Quantification of the effect of thermal indices and sky view factor on park attendance. Landscape and Urban Planning, 107(2), 137-146.
20. Middel, A., et al. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16-28.
21. Oke, T., et al. (1991). Simulation of surface urban heat islands under ‘ideal’conditions at night Part 2: Diagnosis of causation. Boundary-Layer Meteorology, 56-339,(4)358.
22. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
23. Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and buildings, 11(1), 103-113.
24. Salata, F., et al. (2015). How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 99, 32-49. doi: 10.1016/j.enbuild.2015.04.010
25. Santamouris, M., et al. (2012). Using cool paving materials to improve microclimate of urban areas–design realization and results of the flisvos project. Building and Environment, 53, 128-136.
26. Shashua-Bar, L., & Hoffman, M. E. (2004). Quantitative evaluation of passive cooling of the UCL microclimate in hot regions in summer, case study: urban streets and courtyards with trees. Building and Environment, 39(9), 1087-1099.
27. Steyn, D. (1980). The calculation of view factors from fisheye‐lens photographs: Research note.
28. Szűcs, Á. (2013). Wind comfort in a public urban space—case study within Dublin Docklands. Frontiers of architectural Research, 2(1), 50-66.
29. Tahbaz,M., Jaliliyan,S., (2016). The role of materials of side walk on open spaces microclimate, field research in campus. Journal of fine arts, architecture and urbanism, 70, 21-32.(in Persian)
30. Targhi, M. Z., & Van Dessel, S. (2015). Potential Contribution of Urban Developments to Outdoor Thermal Comfort Conditions: The Influence of Urban Geometry and Form in Worcester, Massachusetts, USA. Procedia Engineering, 118, 1153-1161. doi: 10.1016/j.proeng.2015.08.457
31. Toudert, F. A. (2005). Dependence of Outdoor Thermal Comfort on Street Design in Hot and Dry Climate. 80.
32. Unger, J.(2008). Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. International Journal of Environment and Pollution, 36(1-3), 59-80.
33. Yang, F., et al. (2013). Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Building and Environment, 70, 122-137.
34. Yilmaz, A. K. S., & Matzarakis, M. A. I. A. (2015). The role of trees in urban thermal comfort and SkyView Factor.