امکان سنجی پتانسیل انرژی بادی در شمال غرب ایران با استفاده از الگوریتم فازی

نویسندگان

1 استادیار گروه جغرافیا و اقلیم شناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 کارشناس ارشد جغرافیا و اقلیم شناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

      یکی از مهم­ترین و قابل دسترس ترین انرژی­های نو، انرژی بادی می­باشد که بیشتر کشورهای توسعه یافته و در حال توسعه از این انرژی برای تأمین منابع نیروی خود بهره می­گیرند. هدف از این تحقیق، امکان سنجی پتانسیل انرژی بادی در شمال غرب ایران با استفاده از الگوریتم فازی می­باشد. روش تحقیق از نوع کاربردی – تحلیلی می­باشد. بدین منظور اطلاعات داده­های باد (سرعت و جهت باد) برای ایستگاه­های شمال غرب ایران در دوره آماری 2000 الی 2008 از سازمان هواشناسی کشور اخذ گردید. سپس فراوانی سرعت باد ایستگاه­های مورد مطالعه بر اساس معیار 4 متر در ثانیه و بیشتر بدست آمد. این داده­ها بر اساس روش خوشه­بندی فازی(FCM)، در محیط نرم­افزار Matlab طبقه­بندی گردیدند. الگوریتم FCM کاربرد وسیعی در تحلیل فراوانی ناحیه­ای دارد. همچنین با استفاده از نرم­افزار WINROSE باد غالب و جهت باد ایستگاه­های مورد مطالعه تهیه گردید. نتایج این تحقیق نشان داد که ایستگاه اردبیل (خوشه اول)، در بین تمام ایستگاه­های مورد مطالعه دارای بیشترین فراوانی وقوع باد با سرعت 4 متر در ثانیه است که مقدار آن، 5183 بار تکرار در طول دوره آماری مورد مطالعه می­باشد. ایستگاه­های ارومیه و پارس­آباد (خوشه پنجم)، دارای حداقل فراوانی وقوع باد با سرعت 4 با مقدار میانگین 577 بار تکرار در طول دوره­ی آماری مورد مطالعه می­باشند. با توجه به نتایج بدست آمده می­توان گفت که خوشه اول، دوم و سوم برای استفاده از انرژی باد به صورت توربین بادی مقرون به صرفه می باشد و خوشه چهارم و پنجم برای استفاده از این انرژی نامناسب هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Wind Energy potential in the North-West of Iran by using Fuzzy Algorithm

نویسندگان [English]

  • Batool Zeynali 1
  • Ali Azimi 2
چکیده [English]

One of important and successable new energy is wind energy that many developed and developing countries use wind energy to supply power. The aim of this reasearch is to evaluate wind energy potantial in North-West of Iran with fuzzy allgorithme. The data of this applied- analytical research were collected from Country Meteorological Organization form 2000 to 2008. Then, the collected wind speed frequency were based on the standard 4 meters per second and more that  were classified in Matlab software. FCM algorithm was used extensively in the regional frequency analysis. Also, WINROSE software was used to determine the prevailing wind and wind direction. The results indicated that Ardabil station (first cluster) among all stations in the study has the highest frequency of wind occurrence whit speed of 8 knot and more. The frequency of this cluster is 5183 in studied statistical period. Urmia and Parsabad stations (cluster 5) have the lowest frequency of wind occurrence with speed of 8 knot that the average of this cluster is 577 times in studied statistical period. This reasearch found that First, second and third clusters for use of wind energy were very suitable and the fourth and fifth clusters were unsuitable to use of wind energy.

کلیدواژه‌ها [English]

  • North- West
  • Wind energy
  • Fuzzy clustering
  • Direction
  • Speed of wind
  1. Abdoli, H. Sari Saraf, B. and Hosseini Samchi, A. (2010), The feasibility of wind energy potential and its application in industrial development projects Case Study (East Azerbaijan), Geographical space Azad University of Ahar, 28, pp: 57- 72. (in persian)
  2. Afrakhteh, H. and Y. Amlashi, (2011): Innovative method to clustering values recorded wind speed in wind power stations by Particle Swarm Optimizations (PSO), Journal of Electrical and Computer Engineering, 3, pp: 210-214. (in persian)
  3. Ahmeda, S.A., Mahammeda, H.O. (2012): A Statistical Analysis of Wind Power Density Based on the Weibull and Ralyeigh models of "Penjwen Region" Sulaimani/ Iraq, Journal of Mechanical and Industrial Engineering, Vol 6, Num 2, pp 135-140.
    1. Alamdari, P. O. Nematollahi, S. M. Mirhosseini, and A. A. Alam Rajabi, (2012), evaluate the wind energy potential in Ardabil province to build wind farm, International Conference on New Trends in energy conservation, Tehran, pp: 3-8. (in persian)
  4. Amani, A. and A. Hoseini Shamchi, (2011): Evaluate the wind energy potential in South Aras basin stations, Geographical space Azad University of Ahar, 29, pp: 1-26. (in persian)
    1. Badrana, O., Abdulhadi, E., Tousc, Y., (2011): Fuzzy Logic Controller for Predicting Wind Turbine Power Generation, International journal of Mechanical and Material Engineering, vol 6, No 1, pp 51-66.
  5. Bezdek, J. C., (1981): Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, pp 1-256.
  6. Dodangeh, E., Shao, Y., and Daghestani, M., (2012): L-Moments and fuzzy cluster analysis of dust storm frequencies in Iran, Aeolian Research, 5, pp 91–99
  7. Dunn, J. C, (1974), A Fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J. Cybernetics 3 (3), pp 32-57.
  8. Ezzatian, V. and M. B. Behyar, (2004), Estimation of wind potential energy in different climatic zones in order to the design and development of clean energy sources, Fourth National Conference on Energy, pp: 1-13. (in persian)
    1. Gandomkar, A. (2010), Evaluation wind energy in Iran, Journal of Geography and Environmental Planning, 36, pp: 86-100. (in persian)
    2. Irwanto, M., Gomesh, N., Mamat, M.R., Yusoff, Y.M. (2014): Assessment of wind power generation potential in perlis Malaysia. Renewable and Sustainable Energy Reviews, Volum 38, p 296-308.
    3. Mohammadi, H. SH. Rostami Jalilian, F, Taghavi, and A. Shamsipour, (2013), Potential survey of wind energy in Kermanshah Province, Geographical Research Tehran University, 2, pp: 19-32. (in persian)
    4. Nematollahi, O. P. Alamdari, and A. A. Alam Rajabi, (2012), Potential survey of Electrical energy from wind energy in Persian Gulf coast, Case Study Bushehr, Power Research Institute, Tehran. (in persian)
    5. Promsen, W., Janjai, S., Tantalechon, T., (2014): An Analysis Wind Energy Potential of Kampot province Southern Cambodia, International Conference On Alternative Energy in Developing Countries and Emergency Economics, Energy Prosedia 52, pp 633-641.
  9. Rahim Zadeh, F., Pedram, M., Sedaghat Kerdar, A., and GH. Kamali, (2010), Estimation of wind energy in synoptic stations of Esfahan province, Geography and Environmental Planning, 20, pp: 155-172. (in persian)
  10. Rao, A. R., and Srinivas, V. V., (2006): Regionalization of watersheds by fuzzy cluster analysis, Journal of Hydrology, 318: (1–4), pp 57–79.
  11. Roshan, GH. R., A. A. Ghanghormeh and E. SHahkoohi (2015), Evaluation the potential of wind energy in selected stations in Iran, 14, pp: 13-30. (in persian)
  12. Saidi, D., O. Nematollahi, and A. A. Alam Rajabi (2012), Evaluate the wind energy potential in North Khorasan Province in Iran, Management of energy, pp: 49-56. (in persian)
  13. Salahi, B. (2005), Potential survey of Wind Energy and fitting the real possibilities of wind by Weibull probability density distribution function in synoptic stations of Ardabil, Geographical Research, 72, pp: 88 & 92. (in persian)
  14. Sheerbafiyan, N. (2009), The estimation of wind power potential and take advantage of its effect on saving fossil fuel in Iran, Energy Economics Studies, 5, pp: 17, 113, 140. (in persian)
  15. Shirani, E., H. Ahmadikia, Talebi, F. and Mojib, JH. (2004), Use the wind to produce energy in Kurdistan, International Journal of Engineering Science, 5, pp: 62-80. (in persian)
  16. Zahedi, M. B. Salahi, and M. Jamil (2006), Calculate the wind energy density and in order to use its energy in Ardebil, Geographic Researches, 53, pp: 41-55. (in persian)